Second Generation GLobal Imager

Электромонтаж Ремонт и отделка Укладка напольных покрытий, теплые полы Тепловодоснабжение

Second Generation GLobal Imager

22.04.2021

Second Generation GLobal Imager (SGLI; с англ. — «Глобальный создатель изображений второго поколения») — комплект оптических многоканальных радиометрических приборов, являющихся единственным научным инструментом японского метеорологического спутника «Сикисай». Инструмент создавался в рамках реализации проекта Global Change Observation Mission, реализуемого Японским агентством аэрокосмических исследований (JAXA), и предназначен для наблюдения за изменениями оптических показателей атмосферы Земли, океанов, растительного и ледового покрова в течение длительного промежутка времени. Первый комплект приборов SGLI был запущен в космос 23 декабря 2017 года в рамках миссии GCOM-C1 («Сикисай»). Планируется запуск второго и третьего комплекта аппаратуры в рамках миссий GCOM-C2 и GCOM-C3 в 2021 и 2025 годах.

История создания

Работы над инструментом SGLI проводились в рамках проекта GCOM (англ. Global Change Observation Mission). Инструмент проектировался с целью использования на серии космических аппаратов GCOM-C, первый из которых получил имя «Сикисай» («Shikisai», яп. しきさい) или GCOM-C1. Эскизное проектирование SGLI началось в июне 2009 года. Финансирование программы GCOM-C1 было одобрено Комиссией по космической деятельности Японии в декабре 2009 года. В марте 2010 года после успешной защиты проекта началось производство SGLI. В декабре 2013 года проект программы GCOM-C1 прошёл этап критической защиты (англ. Critical Design Review), после чего началось производство космического аппарата. 23 декабря 2017 года «Сикисай» был успешно выведен на орбиту и начался трёхмесячный этап ввода в встрой систем космического аппарата и полезной нагрузки. 12 января 2018 года JAXA опубликовала первые фотографии, сделанные приборами инструмента SGLI. На них были изображены район Канто (Япония) (снимок сделан в 10:30 JST 6 января 2018 года), устье Ганга (снимок сделан в 11:40 JST 3 января 2018 года) и Охотское море, Сахалин и Японский архипелаг (снимок сделан в 10:20 JST 6 января 2018 года).

Инструмент SGLI является дальнейшим развитием инструмента GLobal Imager (GLI), который успешно работал на японском спутнике «Мидори-2» с 14 декабря 2002 по 24 октября 2003 года. Спутник вышел из строя, но инструмент GLI зарекомендовал себя с лучшей стороны. Ключевое отличие SGLI от GLI состоит в том, что более старый инструмент работал с шестью каналами, а более поздний с одиннадцатью, при одинаковом разрешении 250 м.

Состав и функционирование

Основным разработчиком и изготовителем SGLI являлась японская компания NEC TOSHIBA Space Systems Ltd. Инфракрасные детекторы были изготовлены французской компанией Sofradir.

SGLI состоит из двух приборов: англ. Visible and Near Infrared Radiometer (VNR) и англ. Infrared Scanner (IRS). Радиометр VNR измеряет неполяризованное излучение в видимом и ближнем инфракрасном диапазоне в 11 каналах (от 0,38 до 865,5 мкм) и поляризованное излучение в двух каналах (673,5 и 868,5 нм). Инфракрасный сканер IRS измеряет ближнее инфракрасное излучение в четырёх каналах (1,05, 1,38, 1,63 и 2,21 мкм) и среднее ИК-излучение (10,8 и 12,0 мкм).

Visible and Near Infrared Radiometer

Радиометр англ. Visible and Near Infrared Radiometer (VNR, VNIR) имеет размеры 1,3 м на 1,7 м, вес 290 кг и максимальную потребляемую мощность 400 Вт. VNR позволяет получать информацию по одиннадцати неполяризованным каналам (NP) и трём поляризованным (PL). NP-каналы объединены в три телескопа рефрактора с фокусным расстоянием 24 см. Телескопы расположены поперёк движения спутника для обеспечения угла обзора 70°. Такой широкий угол позволяет охватывать на поверхности Земли полосу шириной 1150 км. В каждом телескопе изображение проецируется на 12-битную 11-канальную ПЗС-матрицу. Разделение изображения для каждого из каналов обеспечивается полосовыми фильтрами. Разрешение системы составляет 250 м. Каждый из NP-детекторов сделан на основе 2000-пиксельной ПЗС-матрицы.

Три поляризационных канала работают с углами поляризации 0°, 60° и 120°. Для наблюдения за аэрозолями в атмосфере Земли телескопы поляризационных каналов могут отклоняться на ±45° вокруг оси Y ориентации орбитальной платформы. Наблюдаемый угол рассеивания отражённого аэрозолями излучения рассчитывается исходя из положения спутника на орбите, положения Солнца относительно Земли и угла наблюдения. Каждый из PL-детекторов сделан на основе 1000-пиксельной ПЗС-матрицы.

Для поддержания стабильного уровня получаемых данных прибор VNR регулярно проводит калибровку оборудования. Для этого используется спектралоновый диффузор солнечного света и бортовой светодиодный эталонный источник света. Кроме этого раз в 29 дней проводится манёвр спутника для калибровки прибора по Луне.

Infrared Scanner

При реализации прибора англ. Infrared Scanner (IRS) была использована схема англ. Whiskbroom — небольшое количество детекторов и сканирующее зеркало, передающее излучение на детекторную матрицу. Детекторы инфракрасного излучения были изготовлены компанией Sofradir на основе HgCdTe-матрицы.

Инфракрасный сканер работает в четырёх каналах SWIR и двух каналах TIR:

Вектор наблюдения прибора направлен в надир относительно ориентации спутника. Зеркало прибора колеблется в диапазоне ± 45° с частотой 81 колебание в минуту. Это обеспечивает угол обзора прибора 80°, что даёт ширину обзора на поверхности Земли 1400 км. В каждом цикле сканирования существует этап сканирования калибратора состоящего из чёрного тела, рассеивателя солнечного излучения и внутреннего источника света. Подобное решение повышает точность детекторов. Излучение фокусируется на фокальную плоскость телескопом созданный по схеме Ричи — Кретьена. Апертура телескопа 170 мм, фокусное расстояние 448 мм, диафрагма F/2.64.

Во всех четырёх каналах SWIR используются детекторы на основе InGaAs-матрицы, охлаждённых до −30 °C элементами Пельтье. Для каналов TIR используются HgCdTe-матрица, охлаждённая до −218 °C с помощью холодильника работающего по циклу Стирлинга. Одним из важных условий штатного функционирования IRS является калибровка прибора. Калибратор для каналов SWIR состоит из солнечного рассеивателя, светодиодного и галогенового источников света, а также «чёрного тела». Рассеиватель изготовлен из спектралона. В положении TIR-«калибровка» отслеживается температура чёрного тела с коэффициентом поглощения 0,98 и температура открытого космоса. В положении SWIR-«калибровка» отслеживаются показатели рассеянного солнечного излучения, излучение светодиодного и галогенового источников излучения, а также температура открытого космоса. Эти калибровки проводятся еженедельно. Раз в 29 дней проводится калибровка по Луне и раз в год по Солнцу. Для этих калибровок космический аппарат «Сикисай» разворачивается соответствующим образом, для чего имеет на борту 135 килограммов топлива.

Зеркало прибора, весом 1,1 кг, изготовлено из алюминия и имеет восьмигранную форму. Отражающая поверхность имеет коэффициент отражения более 84 % и коэффициент поляризации менее 1,4 %.

Габариты прибора IRS 0,6 на 1,4 м, вес 193 кг и максимальная потребляемая мощность 400 Вт.

Комментарии

  • ↑ англ. Visible and Near Infrared Radiometer — радиометр видимого и ближнего инфракрасного излучения
  • ↑ англ. Infrared Scanner — инфракрасный сканер
  • ↑ англ. Short-wavelength infrared — коротко-волновое инфракрасное излучение
  • ↑ англ. Thermal infrared — тепловое инфракрасное излучение
  • ↑ Индий+Галлий+Мышьяк
  • ↑ Ртуть+Кадмий+Теллур

  • Имя:*
    E-Mail:
    Комментарий: