Электромонтаж Ремонт и отделка Укладка напольных покрытий, теплые полы Тепловодоснабжение

Теория процесса получения аморфных порошков

22.01.2019

Методы распыления


Процессы распыления с целью получения порошков можно свести к двум последовательным стадиям: образованию капли жидкого металла и закалке капли.

Имеется лишь качественное понимание процесса газового распыления вследствие его сложности. Распыляющие газовые потоки разбивают струю металла, образуя обращенный полый конус, который непрерывно изменяется, исчезая и вновь возникая во время процесса распыления. Под действием динамических сил стенка конуса, представляющая собой тонкую пленку, разбивается на трубчатые образования, которые в свою очередь распадаются на капли. Эта схема процесса распыления нашла подтверждение в ряде работ, в которых использовалась высокоскоростная фотография.

Попытка найти количественные соотношения для описания зависимости размера капли от параметров процесса нельзя назвать полностью удавшимися. Обнаружен ряд корреляций, каждая из которых зависит от геометрии распыления и соответствующих параметров. Некоторые из существующих корреляций приведены в литературе. Имеется согласованность относительно важности следующих факторов:

1. Снижение сопротивления расплава распылению. Образованию мелких частиц благоприятствуют низкие значения поверхностного натяжения расплава (о) и вязкости (n). На них можно повлиять, изменяя состав расплава, режим перегрева и используя поверхностно-активные добавки (последние влияют только на ветчину поверхностного натяжения).

2. Повышение кинетической энергии газового потока в точке распыления. Это достигается путем уменьшения расстояния между расплавом и газовым соплом, а также повышением скорости газа (изменением его давления и подбором конструкции сопла) и его плотности.

3. Увеличение отношения скорости течения массы газа к скорости течения массы металла (Mm).

Результаты исследований приводят к заключению, что распыление водой происходит в соответствии с двумя механизмами образования капли: путем среза и разбрызгивания. Однако, как и в случае газового распыления, получены различные выражения для связи среднего размера капли (Dp) с параметрами распыления. Имеется согласие в том, что наиболее важным параметром процесса является скорость движения воды, причем средний размер частицы обратно пропорционален этой скорости или компоненту скорости, перпендикулярному струе металла. Пo данным Фридмана и др. средний размер капли при распылении и центрифуге составляет:

где w, r, р и К — соответственно частота вращения диска, радиус диска, плотность металла и константа, характеризующая процесс. Это выражение остается справедливым в широком интервале параметров процесса.

Отвод тепла от образовавшихся при распылении капель, если они напрямую не контактируют с твердой подложкой, происходит путем конвекции и радиации. В одной из ранних работ было показано, что отвод тепла путем радиации от малых капель в теплопроводящий среде по меньшей мере на порядок величины меньше теплоотвода путем конвекции. Если ограничиться только конвективным теплообменом и предположить, что теплоотдача описывается законом Ньютона (существует некоторая неопределенность в том, каким должен быть верхний предел числа Байота — 0,01 или 0,001 для того, чтобы такое предположение было справедливым), то скорость охлаждения сферы малого диаметра в конвекционной среде можно представить в следующем виде:

Здесь Re = vDpf/uf — число Рейнольдса; Pr = Cpfu/kf — число Прандтля; kf, Tf, рf, uf и Cpf — соответственно теплопроводность охлаждающей жидкости, температура, плотность, вязкость и удельная теплоемкость; Dp, Tp, рр и Cp — соответственно диаметр металлической капли, температура, плотность и средняя удельная теплоемкость в исследуемом интервале температур.

Из приведенного выражения следует, что наиболее важным фактором, влияющим на скорость охлаждения капли, является образование капель малого диаметра на стадии распыления, поскольку максимальная скорость охлаждения обратно пропорциональна квадрату диаметра капли. Кроме того, в любом порошке, который охлаждается путем конвективного теплообмена, будет наблюдаться большой разброс скоростей охлаждения просто потому, что существует распределение частиц по размерам. Отметим также, что применимость этого выражения к сфере в жидкой среде справедливо в том случае, если скорость движения сферы относительно среды достаточно высока для того, чтобы можно было пренебречь эффектом локального кипения.
Имя:*
E-Mail:
Комментарий: